Machine Learning
  • Introduction
  • man
  • Linear model
    • Linear Regression
    • Generalized Linear Models
    • Nonlinear regression
  • bayes
    • bayesian network
    • Variational Bayesian inference
    • Gaussian Process Regression
  • Logistic Regression
    • L1 regularization
    • L2 regularization
    • softmax
    • Overflow and Underflow
  • SVM
    • C-SVM
    • C-SVM求解
  • EM
    • GMM
  • Maximum Entropy
    • IIS
  • HMM
    • viterbi algorithm
  • CRF
  • Random Forest
    • bagging
    • random forest
  • boosting
    • catboost
    • gradient boosting
    • Newton Boosting
    • online boosting
    • gcForest
    • Mixture models
    • XGBoost
    • lightGBM
    • SecureBoost
  • LDA
  • rank
    • RankNet
    • LambdaRank
    • SimRank
  • Factorization Machine
    • Field-aware Factorization Machine
    • xdeepFM
  • Clustering
    • BIRCH
    • Deep Embedding Clustering
  • Kalman filtering
  • word2vec
  • 关联规则挖掘
  • MATH-Mathematical Analysis
    • measure
  • MATH-probability
    • Variational Inference
    • Dirichlet分布
    • Gibbs Sampling
    • Maximum entropy probability distribution
    • Conjugate prior
    • Gaussian Process
    • Markov process
    • Poisson process
    • measure
    • Gumbel
  • MATH-Linear Algebra
    • SVD
    • SVD-推荐
    • PCA
    • Linear Discriminant Analysis
    • Nonnegative Matrix Factorization
  • MATH-Convex optimization
    • 梯度下降
    • 随机梯度下降
    • 牛顿法
    • L-BFGS
    • 最速下降法
    • 坐标下降法
    • OWL-QN
    • 对偶问题
    • 障碍函数法
    • 原对偶内点法
    • ISTA
    • ADMM
    • SAG
  • MATH-碎碎念
    • cost function
    • Learning Theory
    • sampling
    • Entropy
    • variational inference
    • basis function
    • Diffie–Hellman key exchange
    • wavelet transform
    • 图
    • Portfolio
    • 凯利公式
  • ML碎碎念
    • 特征
    • test
    • TF-IDF
    • population stability index
    • Shapley Values
  • 课件
    • xgboost算法演进
  • Time Series
  • PID
  • graph
    • SimRank
    • community detection
    • FRAUDAR
    • Anti-Trust Rank
    • Struc2Vec
    • graph theory
    • GNN
  • Anomaly Detection
    • Isolation Forest
    • Time Series
  • Dimensionality Reduction
    • Deep Embedded Clustering
  • Federated Learning
  • automl
  • Look-alike
  • KNN
  • causal inference
Powered by GitBook
On this page

Was this helpful?

causal inference

https://zhuanlan.zhihu.com/p/442882553  跟着开源项目学因果推断——pylift库的使用(十八)  pylift已废弃 ,且采用的是 Transformed Outcome 方法,然后用机器学习解决。

https://mp.weixin.qq.com/s/qTzhyvtYEENbUZ1ktUyKNg  基于反事实因果推断的度小满额度模型
https://mp.weixin.qq.com/s/KeIWPqj9lh11kSmZ5CbPRw  因果推断在翼支付智能决策场景的应用 =======  好文
因果推断:数据变量之间存在的关系有三类:因果、混淆、样本选择偏差
因果推断主要解决两类问题:因果关系挖掘,因果效应估计 (Uplift Model)
Uplift Model主要用的是meta-learner 中的 S-learner ,  评估指标是:AUUC

https://mp.weixin.qq.com/s/xmiMi7JPDwG5r0BP8QDI-A  该把优惠券发送给哪些用户?一文读懂Uplift模型
https://mp.weixin.qq.com/s/FOVggFduHKeDr3jidcmqgA  一文读懂uplift model进阶 =======  好文
https://mp.weixin.qq.com/s/YFZQIylt_lPZtxgW2I5p5Q  一文读懂uplift model
https://mp.weixin.qq.com/s/xmiMi7JPDwG5r0BP8QDI-A  该把优惠券发送给哪些用户?一文读懂Uplift模型
https://zhuanlan.zhihu.com/p/448145621  因果推断与uplift模型
https://zhuanlan.zhihu.com/p/425898510  增益模型(Uplift Model)的基础介绍 —— 估算ITE
https://zhuanlan.zhihu.com/p/671694744  【因果推断】A survey on causal inference
https://zhuanlan.zhihu.com/p/519506140  【机器学习-因果推断】DoWhy+EconML 入门最佳案例:促销定价的因果效应
https://zhuanlan.zhihu.com/p/362788755   【Uplift】建模方法篇 =======  好文
https://zhuanlan.zhihu.com/p/363082639   【Uplift】评估方法篇
https://zhuanlan.zhihu.com/p/365860774   Uplift 经典模型介绍
https://mp.weixin.qq.com/s/vsRQMhLF0TEwatyGyGmtZQ  Python:从随机实验到双重机器学习
https://mp.weixin.qq.com/s/-R2pkuliMwbink4AFwa4AA  因果推断之Uplift Model
https://mp.weixin.qq.com/s/t6yWtw2TiCXLkMIM_xmuoA  6000字!一文读懂智能营销增益模型 ( Uplift Model )
https://zhuanlan.zhihu.com/p/410053669  因果推断笔记——入门学习因果推断在智能营销、补贴的通用框架(十一)
https://zhuanlan.zhihu.com/p/401010271  【因果推断/uplift建模】Double Machine Learning(DML)
https://mp.weixin.qq.com/s/jZbSTKSC0G1VC6qz0VaVfA  因果推断在度小满金融场景的应用探索
https://mp.weixin.qq.com/s/fLkuMyM86dSTtI8bBdutgw  金雅然:因果推断主要技术思想与方法总结
https://zhuanlan.zhihu.com/p/464632616  Uplift Modeling相关数据集
https://zhuanlan.zhihu.com/p/411557982  因果推断笔记——因果图建模之微软开源的EconML(五)
https://zhuanlan.zhihu.com/p/411552693  因果推断笔记——因果图建模之Uber开源的CausalML(十二)
https://zhuanlan.zhihu.com/p/456080557  因果推断——借微软EconML测试用DML和deepIV进行反事实预测实验(二十五)
https://mp.weixin.qq.com/s/CL3PQxlj8aL7MB3sKbHXdw  因果推断之Uplift Model|CausalML实战篇
https://zhuanlan.zhihu.com/p/442881104  Uplift Modeling的相关案例介绍
PreviousKNN

Last updated 1 year ago

Was this helpful?