Machine Learning
  • Introduction
  • man
  • Linear model
    • Linear Regression
    • Generalized Linear Models
    • Nonlinear regression
  • bayes
    • bayesian network
    • Variational Bayesian inference
    • Gaussian Process Regression
  • Logistic Regression
    • L1 regularization
    • L2 regularization
    • softmax
    • Overflow and Underflow
  • SVM
    • C-SVM
    • C-SVM求解
  • EM
    • GMM
  • Maximum Entropy
    • IIS
  • HMM
    • viterbi algorithm
  • CRF
  • Random Forest
    • bagging
    • random forest
  • boosting
    • catboost
    • gradient boosting
    • Newton Boosting
    • online boosting
    • gcForest
    • Mixture models
    • XGBoost
    • lightGBM
    • SecureBoost
  • LDA
  • rank
    • RankNet
    • LambdaRank
    • SimRank
  • Factorization Machine
    • Field-aware Factorization Machine
    • xdeepFM
  • Clustering
    • BIRCH
    • Deep Embedding Clustering
  • Kalman filtering
  • word2vec
  • 关联规则挖掘
  • MATH-Mathematical Analysis
    • measure
  • MATH-probability
    • Variational Inference
    • Dirichlet分布
    • Gibbs Sampling
    • Maximum entropy probability distribution
    • Conjugate prior
    • Gaussian Process
    • Markov process
    • Poisson process
    • measure
    • Gumbel
  • MATH-Linear Algebra
    • SVD
    • SVD-推荐
    • PCA
    • Linear Discriminant Analysis
    • Nonnegative Matrix Factorization
  • MATH-Convex optimization
    • 梯度下降
    • 随机梯度下降
    • 牛顿法
    • L-BFGS
    • 最速下降法
    • 坐标下降法
    • OWL-QN
    • 对偶问题
    • 障碍函数法
    • 原对偶内点法
    • ISTA
    • ADMM
    • SAG
  • MATH-碎碎念
    • cost function
    • Learning Theory
    • sampling
    • Entropy
    • variational inference
    • basis function
    • Diffie–Hellman key exchange
    • wavelet transform
    • 图
    • Portfolio
    • 凯利公式
  • ML碎碎念
    • 特征
    • test
    • TF-IDF
    • population stability index
    • Shapley Values
  • 课件
    • xgboost算法演进
  • Time Series
  • PID
  • graph
    • SimRank
    • community detection
    • FRAUDAR
    • Anti-Trust Rank
    • Struc2Vec
    • graph theory
    • GNN
  • Anomaly Detection
    • Isolation Forest
    • Time Series
  • Dimensionality Reduction
    • Deep Embedded Clustering
  • Federated Learning
  • automl
  • Look-alike
  • KNN
  • causal inference
Powered by GitBook
On this page
  • Pointwise
  • pairwise
  • Listwise
  • 评价模型与指标

Was this helpful?

rank

PreviousLDANextRankNet

Last updated 5 years ago

Was this helpful?

Pointwise

Pointwise处理的是单一文档,将文档在当前的query下分成5个等级,即{perfect,Excellent,good,fair,bad}。于是排序问题转化成分类或者回归问题了,可以用最大熵,SVM等解决

pairwise

pairwise处理的是文档对,比较两个文档的顺序关系。这时转化成二分类问题

pairwise存在明显问题

  • 只考虑了两篇文档的相对顺序,没有考虑他们出现在搜索结果列表中的位置。排在前面的文档更为重要,如果出现在前面的文档判断错误,惩罚函数要明显高于排在后面判断错误。因此需要引入位置因素,每个文档对根据其在结果列表中的位置具有不同的权重,越排在前面权重越大,如果排错顺序其受到的惩罚也越大。

  • 对于不同的查询相关文档集的数量差异很大,转换为文档对后,有的查询可能只有十几个文档对,而有的查询可能会有数百个对应的文档对,这对学习系统的效果评价带来了偏置。

Listwise

Listwise处理的是文档列表,是对整个搜索结果作为一个样例。Listwise根据训练样例训练得到最优评分函数F,对应新的查询,评分F对每个文档打分,然后根据得分由高到低排序,即为最终的排序结果。 Listwise效果明显好于前两种。Listwise常用方法有AdaRank,SoftRank,LambdaMART等。

评价模型与指标

http://www.cnblogs.com/ywl925/archive/2013/08/16/3262209.html