y^(x)=w0+∑i=1nwixi+∑i=1n∑j=i+1n⟨vi,vj⟩xixj\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_jy^(x)=w0+∑i=1nwixi+∑i=1n∑j=i+1n⟨vi,vj⟩xixj
截图 Factorization Machines 学习笔记(四)学习算法arrow-up-right
深入FFM原理与实践arrow-up-right 深入浅出ML之Factorization家族arrow-up-right
DeepFM: A Factorization-Machine based Neural Network for CTR Predictionarrow-up-right
Factorization Machinesarrow-up-right 简单易学的机器学习算法——因子分解机(Factorization Machine)arrow-up-right Factorization machine和logistic regression的区别arrow-up-right
Factorization Machines in Pythonarrow-up-right
Factorization Machines for Recommendation Systemsarrow-up-right
推荐系统遇上深度学习(三)--DeepFM模型理论和实践arrow-up-right
ctr预估之DeepFMarrow-up-right 目前效果和理论上比较好的模型,比LR FM都好。
Last updated 5 years ago