variational inference

传统的MCMC去近似,有lib,较容易。但是用VI,每个问题都得推导。但是现在出现 自动变分推断算法,可以直接用lib,比如PyMC3。 贝叶斯深度学习——基于PyMC3的变分推理

欧拉-拉格朗日方程

找一个f(x)f(x),在[a,b][a,b]之间使得J=abF(x,f(x),f(x))dxJ = \int_a^b F(x,f(x),f^\prime (x)) dx积分达到最大值。 假设g(x)=f(x)+εη(x)g(x) = f(x) + \varepsilon \eta(x)ε\varepsilon是个很小的正数,这就相当于g(x)g(x)为最佳函数f(x)f(x)增加了一个很小的扰动。当使用g(x)g(x)求得极值时候,g(x)=f(x)g(x) = f(x)。 将 g(x)g(x)带入原方程,并求导。

J=abF(x,g(x),g(x))dxJε=xεFx+gεFg+gεFg=η(x)Fg+η(x)Fgε=0时,函数能取到极值。且此时:g(x)=f(x),g(x)=f(x)Jεε=0=ab[η(x)Ff+η(x)Ff]dx=0abη(x)Ffdx=abFfdη(x)=[Ffη(x)]ababη(x)dFf=abη(x)dFfabη(x)[Ff+xFf]dx=0Ff+xFf=0J = \int_a^b F(x,g(x),g^\prime (x)) dx \\ \frac {\partial J}{\partial \varepsilon} = \frac {\partial x}{\partial \varepsilon} \frac {\partial F}{\partial x} + \frac {\partial g}{\partial \varepsilon} \frac {\partial F}{\partial g} + \frac {\partial g^\prime}{\partial \varepsilon} \frac {\partial F}{\partial g^\prime} = \eta(x) \frac {\partial F}{\partial g} + \eta^\prime (x) \frac {\partial F}{\partial g^\prime} \\ \text{当}\varepsilon=0 \text{时,函数能取到极值。且此时:} g(x) = f(x), g^\prime(x) = f^\prime(x)\\ \frac {\partial J}{\partial \varepsilon} \mid_{\varepsilon=0} = \int_a^b [\eta(x) \frac {\partial F}{\partial f} + \eta^\prime (x) \frac {\partial F}{\partial f^\prime}] dx = 0 \\ \int_a^b \eta^\prime (x) \frac {\partial F}{\partial f^\prime} dx = \int_a^b \frac {\partial F}{\partial f^\prime} d \eta (x) = [\frac {\partial F}{\partial f^\prime} \eta (x)]_a^b - \int_a^b \eta (x) d \frac {\partial F}{\partial f^\prime} = - \int_a^b \eta (x) d \frac {\partial F}{\partial f^\prime} \\ \int_a^b \eta(x) [\frac {\partial F}{\partial f} + \frac {\partial }{\partial x} \frac {\partial F}{\partial f^\prime}] dx = 0 \\ \frac {\partial F}{\partial f} + \frac {\partial }{\partial x} \frac {\partial F}{\partial f^\prime} = 0 \\

引入“δ\delta算子”来描述上述过程。定义δ[y(x)]=y~y\delta [y(x)] = \tilde{y}-y。 在本例中: δy=y~y=aη,δy=y~y=aη\delta y = \tilde{y}-y = a \eta, \delta y^\prime = \tilde{y^\prime}-y^\prime = a \eta^\prime

欧拉-拉格朗日方程两种形式

变分EM

参考佳文

变分贝叶斯

变分原理正文 变分原理的直接方法 变分方法

数学变分法 变分法 徐亦达的机器学习视频

Last updated

Was this helpful?