IIS

一般介绍最大熵的文章都会IIS。凸优化中迭代方法有很多,目前收敛速度比较快的是拟牛顿法,常用L-BFGS,没必要用IIS,但是IIS的思想可以学习学习。

Lp~(Pw)=logx,yP(yx)P~(x,y)=x,yP~(x,y)logP(yx)=x,yP~(x,y)log(exp(i=1nwifi(x,y))/Zw(x))=x,yP~(x,y)i=1nwifi(x,y)xP~(x)logZw(x)\begin{align} L_{\widetilde p}(P_w) &= \log \prod_{x,y} P(y|x)^{\widetilde P(x,y)} \\ &= \sum_{x,y} \widetilde P(x,y) \log P(y|x) \\ &= \sum_{x,y} \widetilde P(x,y) \log (\exp(\sum_{i=1}^n w_i f_i(x,y)) / Z_w(x)) \\ &= \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n w_i f_i(x,y) - \sum_x \widetilde P(x) \log Z_w(x) \\ \end{align}
L(w+δ)L(w)=x,yP~(x,y)i=1nδifi(x,y)xP~(x)log(Zw+δ(x)/Zw(x))x,yP~(x,y)i=1nδifi(x,y)+xP~(x)(1Zw+δ(x)/Zw(x))(logx1x)=x,yP~(x,y)i=1nδifi(x,y)+1xP~(x)(Zw+δ(x)/Zw(x))=x,yP~(x,y)i=1nδifi(x,y)+1xP~(x)yPw(yx)exp(i=1nδifi(x,y))\begin{align} L(w+\delta) - L(w) &= \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n \delta_i f_i(x,y) - \sum_x \widetilde P(x) \log (Z_{w+\delta}(x)/Z_w(x)) \\ & \ge \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n \delta_i f_i(x,y) + \sum_x \widetilde P(x) (1- Z_{w+\delta}(x)/Z_w(x)) \qquad \because (-log x \ge 1-x )\\ &= \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n \delta_i f_i(x,y) + 1 - \sum_x \widetilde P(x) (Z_{w+\delta}(x)/Z_w(x)) \\ &= \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n \delta_i f_i(x,y) + 1 - \sum_x \widetilde P(x) \sum_y P_w(y|x) \exp(\sum_{i=1}^n \delta_i f_i(x,y)) \\ \end{align}
f#(x,y)=i=1nfi(x,y)exp(i=1nδifi(x,y))=exp(i=1nfi(x,y)f#(x,y)δif#(x,y))i=1nfi(x,y)f#(x,y)exp(δif#(x,y))\text{令} f^{\#} (x,y) = \sum_{i=1}^n f_i(x,y) \\ \exp(\sum_{i=1}^n \delta_i f_i(x,y)) = \exp(\sum_{i=1}^n \frac {f_i(x,y)}{f^{\#} (x,y)} \delta_i f^{\#} (x,y)) \le \sum_{i=1}^n \frac {f_i(x,y)}{f^{\#} (x,y)} \exp(\delta_i f^{\#} (x,y))
L(w+δ)L(w)x,yP~(x,y)i=1nδifi(x,y)+1xP~(x)yPw(yx)i=1nfi(x,y)f#(x,y)exp(δif#(x,y))L(w+\delta) - L(w) \ge \sum_{x,y} \widetilde P(x,y) \sum_{i=1}^n \delta_i f_i(x,y) + 1 - \sum_x \widetilde P(x) \sum_y P_w(y|x) \sum_{i=1}^n \frac {f_i(x,y)}{f^{\#} (x,y)} \exp(\delta_i f^{\#} (x,y))

Last updated